Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Transpl Infect Dis ; : e13972, 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2108166

ABSTRACT

INTRODUCTION: Many institutions suspended surveillance and contact precautions for multidrug-resistant organisms (MDROs) at the outset of the coronavirus disease 2019 (COVID-19) pandemic due to a lack of resources. Once our institution reinstated surveillance in September 2020, a vancomycin-resistant Enterococcus (VRE) faecium outbreak was detected in the cardiothoracic transplant units, a population in which we had not previously detected outbreaks. METHODS: An outbreak investigation was conducted using pulsed-field gel electrophoresis for strain typing and electronic medical record review to determine the clinical characteristics of involved patients. The infection prevention (IP) team convened a multidisciplinary process improvement team comprised of IP, cardiothoracic transplant nursing and medical leadership, environmental services, and the microbiology laboratory. RESULTS: Between December 2020 and March 2021, the outbreak involved thirteen patients in the cardiothoracic transplant units, four index cases, and nine transmissions. Of the 13, seven (54%) were on the transplant service, including heart and lung transplant recipients, patients with ventricular assist devices, and a patient on extracorporeal membrane oxygenation as a bridge to lung transplantation. Four of 13 (31%) developed a clinical infection. DISCUSSION: Cardiothoracic surgery/transplant patients may have a similar risk for VRE-associated morbidity as abdominal solid organ transplant and stem cell transplant patients, highlighting the need for aggressive outbreak management when VRE transmission is detected. Our experience demonstrates an unintended consequence of discontinuing MDRO surveillance in this population and highlights a need for education, monitoring, and reinforcement of foundational infection prevention measures to ensure optimal outcomes.

2.
PLoS One ; 17(6): e0270060, 2022.
Article in English | MEDLINE | ID: covidwho-2021817

ABSTRACT

BACKGROUND: An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. We evaluated clinical performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC rapid PCR test. METHODS: We conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites where we collected two bilateral anterior nasal swabs and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard". RESULTS: We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently SARS-CoV-2 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R = 0.89 [95% CI 0.81, 0.94]). CONCLUSIONS: DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results (approximately 15 minutes) in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Cross-Sectional Studies , Female , Humans , Male , Point-of-Care Systems , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Open Forum Infect Dis ; 9(7): ofac192, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1922309

ABSTRACT

Background: The global effort to vaccinate people against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during an ongoing pandemic has raised questions about how vaccine breakthrough infections compare with infections in immunologically naive individuals and the potential for vaccinated individuals to transmit the virus. Methods: We examined viral dynamics and infectious virus shedding through daily longitudinal sampling in 23 adults infected with SARS-CoV-2 at varying stages of vaccination, including 6 fully vaccinated individuals. Results: The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. Conclusions: Vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.

4.
Am J Respir Crit Care Med ; 204(8): 921-932, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1476910

ABSTRACT

Rationale: Current guidelines recommend patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia receive empirical antibiotics for suspected bacterial superinfection on the basis of weak evidence. Rates of ventilator-associated pneumonia (VAP) in clinical trials of patients with SARS-CoV-2 pneumonia are unexpectedly low. Objectives: We conducted an observational single-center study to determine the prevalence and etiology of bacterial superinfection at the time of initial intubation and the incidence and etiology of subsequent bacterial VAP in patients with severe SARS-CoV-2 pneumonia. Methods: Bronchoscopic BAL fluid samples from all patients with SARS-CoV-2 pneumonia requiring mechanical ventilation were analyzed using quantitative cultures and a multiplex PCR panel. Actual antibiotic use was compared with guideline-recommended therapy. Measurements and Main Results: We analyzed 386 BAL samples from 179 patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. Bacterial superinfection within 48 hours of intubation was detected in 21% of patients. Seventy-two patients (44.4%) developed at least one VAP episode (VAP incidence rate = 45.2/1,000 ventilator days); 15 (20.8%) initial VAPs were caused by difficult-to-treat pathogens. The clinical criteria did not distinguish between patients with or without bacterial superinfection. BAL-based management was associated with significantly reduced antibiotic use compared with guideline recommendations. Conclusions: In patients with SARS-CoV-2 pneumonia requiring mechanical ventilation, bacterial superinfection at the time of intubation occurs in <25% of patients. Guideline-based empirical antibiotic management at the time of intubation results in antibiotic overuse. Bacterial VAP developed in 44% of patients and could not be accurately identified in the absence of microbiologic analysis of BAL fluid.

5.
Access Microbiol ; 3(7): 000239, 2021.
Article in English | MEDLINE | ID: covidwho-1447703

ABSTRACT

INTRODUCTION: Reports of false-negative quantitative reverse transcription PCR (RT-qPCR) results from patients with high clinical suspension for coronavirus disease 2019 (COVID-19), suggested that a negative result produced by a nucleic acid amplification assays (NAAs) did not always exclude the possibility of COVID-19 infection. Repeat testing has been used by clinicians as a strategy in an to attempt to improve laboratory diagnosis of COVID-19 and overcome false-negative results in particular. AIM: To investigate whether repeat testing is helpful for overcoming false-negative results. METHODS: We retrospectively reviewed our experience with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, focusing on the yield of repeat patient testing for improving SARS-CoV-2 detection by NAA. RESULTS: We found that the yield from using repeat testing to identify false-negative patients was low. When the first test produced a negative result, only 6 % of patients tested positive by the second test. The yield decreased to 1.7 and then 0 % after the third and fourth tests, respectively. When comparing the results produced by three assays, the Centers for Disease Control and Prevention (CDC) SARS CoV-2 RT-qPCR panel, Xpert Xpress CoV-2 and ID NOW COVID-19, the ID NOW assay was associated with the highest number of patients who tested negative initially but positive on repeat testing. The CDC SARS CoV-2 RT-qPCR panel produced the highest number of indeterminate results. Repeat testing resolved more than 90 % of indeterminate/invalid results. CONCLUSIONS: The yield from using repeat testing to identify false-negative patients was low. Repeat testing was best used for resolving indeterminate/invalid results.

6.
Biosens Bioelectron ; 195: 113647, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1415225

ABSTRACT

The rapid spread of COVID-19 including recent emergence of new variants with its extreme range of pathologies create an urgent need to develop a versatile sensor for a rapid, precise, and highly sensitive detection of SARS-CoV-2. Herein, we report a microcantilever-based optical detection of SARS-CoV-2 antigenic proteins in just few minutes with high specificity by employing fluidic-atomic force microscopy (f-AFM) mediated nanomechanical deflection method. The corresponding antibodies against the target antigens were first grafted on the gold-coated microcantilever surface pre-functionalized with EDC-NHS chemistry for a suitable antibody-antigen interaction. Rapid detection of SARS-CoV-2 nucleocapsid (N) and spike (S1) receptor binding domain (RBD) proteins was first demonstrated at a clinically relevant concentration down to 1 ng/mL (33 pM) by real-time monitoring of nanomechanical signal induced by antibody-antigen interaction. More importantly, we further show high specific detection of antigens with nasopharyngeal swab specimens from patients pre-determined with qRT-PCR. The results take less than 5 min (swab to signal ≤5 min) and exhibit high selectivity and analytical sensitivity (LoD: 100 copies/ ml; 0.71 ng/ml of N protein). These findings demonstrate potential for nanomechanical signal transduction towards rapid antigen detection for early screening of SARS-CoV-2 and its related mutants.


Subject(s)
Biosensing Techniques , COVID-19 , Gold , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Access Microbiol ; 2(12): acmi000176, 2020.
Article in English | MEDLINE | ID: covidwho-1045782

ABSTRACT

Sputum and endotracheal aspirates (ETs) are not among the vendor-approved specimens for the Cepheid Xpert SARS-CoV-2 assay. However, they are the common lower respiratory tract specimens submitted for laboratory diagnosis. Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in lower respiratory tract samples is required for the discharge of patients from coronavirus disease (COVID) units at some institutions. We developed a protocol used for testing unliquified viscous sputum or tracheal aspirate with the Cepheid Xpert SARS-CoV-2 assay.

8.
EBioMedicine ; 62: 103112, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023543

ABSTRACT

BACKGROUND: The rapid spread of SARS-CoV-2, the causative agent of Coronavirus disease 2019 (COVID-19), has been accompanied by the emergence of distinct viral clades, though their clinical significance remains unclear. Here, we aimed to investigate the phylogenetic characteristics of SARS-CoV-2 infections in Chicago, Illinois, and assess their relationship to clinical parameters. METHODS: We performed whole-genome sequencing of SARS-CoV-2 isolates collected from COVID-19 patients in Chicago in mid-March, 2020. Using these and other publicly available sequences, we performed phylogenetic, phylogeographic, and phylodynamic analyses. Patient data was assessed for correlations between demographic or clinical characteristics and virologic features. FINDINGS: The 88 SARS-CoV-2 genome sequences in our study separated into three distinct phylogenetic clades. Clades 1 and 3 were most closely related to viral sequences from New York and Washington state, respectively, with relatively broad distributions across the US. Clade 2 was primarily found in the Chicago area with limited distribution elsewhere. At the time of diagnosis, patients infected with Clade 1 viruses had significantly higher average viral loads in their upper airways relative to patients infected with Clade 2 viruses, independent of disease severity. INTERPRETATION: These results show that multiple variants of SARS-CoV-2 were circulating in the Chicago area in mid-March 2020 that differed in their relative viral loads in patient upper airways. These data suggest that differences in virus genotype can impact viral load and may influence viral spread. FUNDING: Dixon Family Translational Research Award, Northwestern University Clinical and Translational Sciences Institute (NUCATS), National Institute of Allergy and Infectious Diseases (NIAID), Lurie Comprehensive Cancer Center, Northwestern University Emerging and Re-emerging Pathogens Program.


Subject(s)
COVID-19/genetics , Genome, Viral , Genotype , Phylogeny , SARS-CoV-2/genetics , Viral Load , Female , Humans , Male , Whole Genome Sequencing
9.
Nature ; 590(7847): 635-641, 2021 02.
Article in English | MEDLINE | ID: covidwho-1019856

ABSTRACT

Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.


Subject(s)
COVID-19/immunology , COVID-19/virology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , COVID-19/genetics , Cohort Studies , Humans , Interferon-gamma/immunology , Interferons/immunology , Interferons/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Pneumonia, Viral/genetics , RNA-Seq , SARS-CoV-2/immunology , Signal Transduction/immunology , Single-Cell Analysis , T-Lymphocytes/metabolism , Time Factors
11.
EClinicalMedicine ; 26: 100475, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691494

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) in December 2019 overlaps with the flu season. METHODS: We compared clinical and laboratory results from 719 influenza and 973 COVID-19 patients from January to April 2020. We compiled laboratory results from the first 14 days of the hospitalized patients using parameters that are most significantly different between COVID-19 and influenza and hierarchically clustered COVID-19 patients. FINDINGS: Compared to influenza, patients with COVID-19 exhibited a continued increase in white blood cell count, rapid decline of hemoglobin, more rapid increase in blood urea nitrogen (BUN) and D-dimer, and higher level of alanine transaminase, C-reactive protein, ferritin, and fibrinogen. COVID-19 patients were sub-classified into 5 clusters through a hierarchical clustering analysis. Medical records were reviewed and patients were risk stratified based on the clinical outcomes. The cluster with the highest risk showed 27·8% fatality, 94% ICU admission, 94% intubation, and 28% discharge rates compared to 0%, 38%, 22%, and 88% in the lowest risk cluster, respectively. Patients in the highest risk cluster had leukocytosis including neutrophilia and monocytosis, severe anemia, increased red blood cell distribution width, higher BUN, creatinine, D-dimer, alkaline phosphatase, bilirubin, and troponin. INTERPRETATION: There are significant differences in the clinical and laboratory courses between COVID-19 and influenza. Risk stratification in hospitalized COVID-19 patients using laboratory data could be useful to predict clinical outcomes and pathophysiology of these patients. FUNDING: National Institute of Diabetes and Digestive and Kidney Disease, Department of Defense, and National Heart, Lung, and Blood Institute.

SELECTION OF CITATIONS
SEARCH DETAIL